Арсенид бора оказался лучше супердорогого алмаза
Ученые обнаружили, что относительно недорогой материал может заменить дорогостоящие алмазы в высокопроизводительной электронике.
Речь идет о теплопроводности, которая у алмаза составляет при комнатной температуре более 2000 Вт на метр на градус Кельвина, что в 5 раз выше, чем у лучших металлических проводников, таких как медь. Благодаря этому уникальному свойству алмазов, их иногда применяют для отвода тепла из ядер высокопроизводительных процессоров. К сожалению, даже синтетические алмазы слишком дороги, чтобы массово их использовать в электронике, такой как домашние персональные компьютеры.
Высокая теплопроводность алмаза ученым знакома и объясняется малой массой атомов углерода и жесткими химическими связями между ними. Однако недавно ученые обнаружили, что такой же рекордной теплопроводностью обладает и другое соединение: непохожий на алмаз, арсенид бора с кубической кристаллической решеткой. Команда физиков-теоретиков из Бостонского колледжа и Военно-морской научно-исследовательской лаборатории ВМС США решили выяснить, благодаря чему химическое соединение бора и мышьяка может конкурировать с алмазом. Новый теоретический подход позволил ученым раскрыть секрет высокой теплопроводности арсенида бора.
В отличие от металлов, где тепло переносят электроны, алмаз и арсенид — это диэлектрики, они переносят тепло с помощью колебательных волн, которые движутся от атома к атому. При этом столкновение этих волн создает внутреннее сопротивление тепловому потоку.
Физики с удивлением обнаружили необычное взаимодействие определенных колебательных свойств арсенида бора, которые обычно оставались вне поля зрения ученых, изучающих теплопроводность электрических изоляторов. Оказывается, столкновение между колебательными волнами в определенном диапазоне частот намного реже, чем на других частотах. В результате, на определенной частоте колебаний арсенид бора проводит больше тепла и схож по этим параметрам с алмазом.
Новое исследование позволяет по-новому взглянуть на физику переноса тепла в материале и заодно иллюстрирует мощь современных вычислительных методов. На практике открытие позволит разработать новые методики отвода тепла от миниатюрной электроники, что позволит резко поднять ее производительность. Также не исключено, что новую информацию удастся применить для разработки высокоэффективных технологий для альтернативной энергетики.
Источник: http://rnd.cnews.ru/natur_science/news/line/index_science.shtml?2013/07/12/535210